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We propose a new algorithm for solving the weighted histogram analysis method (WHAM)
equations to estimate free energies out of a set of Monte Carlo (MC) or molecular dynamics
(MD) simulations. The algorithm, based on free-energy differences, provides a more natural
way of approaching the problem and improves convergence compared to the widely used
direct iteration method. We also study how parameters (temperature, pressure, etc.) of the
independent simulations should be chosen to optimize the accuracy of the set of free
energies.
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1. Introduction

The multiple histogram method, also known as the weighted histogram analysis method (WHAM), is a technique for com-
bining data from multiple Monte Carlo (MC) or molecular dynamics (MD) computer simulations to calculate thermodynamic
properties as continuous functions over a wide range of values of temperature, pressure, etc. [1–3]. WHAM has proven effi-
cient and accurate in many applications, but some questions remain as to their optimal implementation.

The questions we are concerned with in this paper are:

1. What is the most efficient method for computing the self-consistent set of free-energy parameters from the histogram
data?

2. How should parameters (temperature, pressure, etc.) of the independent computer simulations be chosen to optimize the
accuracy of the final results?

In Section 2, we recall the WHAM equations [1–3], and discuss the convergence of the direct iteration (DI) algorithm for
solving these equations. We will then develop a more efficient approach based on the relationship of the WHAM equation to
an earlier equation derived by Bennett [4]. The efficiency of these approaches turns out to be surprisingly sensitive to appar-
ently harmless variations in the details of their implementation. We present numerical comparisons of the efficiency of the
different variations and provide recommendations of the best way to proceed, depending of the number and degree of over-
lap of the histograms from the independent simulations.
. All rights reserved.
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In Section 3 we address the question of the optimum choice of overlap between neighboring histograms. Although it
might seem that maximizing the overlap would be optimal, we will show that neighboring histograms should be separated
by somewhat more than double their rms width.

We conclude the paper in Section 4 with recommendations for an efficient, nearly automatic implementation of the
choice of simulation parameters, together with an efficient solution of the WHAM equations.

2. The WHAM equations and the free-energy parameters

For simplicity of notation we will only discuss the WHAM equations for the case of varying the temperature and measur-
ing the energy in the simulations. Although WHAM can be applied to a wide variety of physical models, simulation param-
eters, and thermodynamic properties, all other cases can be obtained from our equations by simple analogies.

The partition function is given as a sum over the energy,
Z ¼
X

E

WðEÞ exp½�bE�; ð1Þ
where b = 1/kBT and W(E) is the density of states. The free-energy is then given by
F ¼ �b�1 ln Z: ð2Þ
We will consider a set of R computer simulations that have each produced a set of histograms {Hn(E)jn = 1, . . . ,R} for the
distributions of energies at the inverse temperatures bn = 1/kBTn. The WHAM equations give the best estimate for the unnor-
malized probability of the energy E at inverse temperature b as
PðE;bÞ ¼
PR

n¼1g�1
n HnðEÞ exp½�bE�PR

m¼1Nmg�1
m exp½�bmE� fm�

; ð3Þ
where gn = 1 + 2sn is a measure of the independence of the values of the energy for the nth MC simulation [5,6], sn is the
correlation time, and the free-energy parameters fn = �bnF(bn) are determined by the equations
efn ¼
X

E

PðE;bÞ: ð4Þ
Some features of these equations will prove important in applications.
It can be immediately seen that if gn = g1 for all n, the gn’s cancel out of Eq. (3). Furthermore, as the statistical accuracy of

the data in the histograms improves, the values of the gn become less important. We can see this by considering the expec-
tation values of the histograms
hHnðEÞi ¼ NnWðEÞ expð�bnEÞ=Zn; ð5Þ
where W(E) is the density of states and Zn ¼
P

E expð�bnEÞ is the partition function at the inverse temperature bn. If we sub-
stitute Eq. (5) in Eq. (3), we find that the equation is satisfied for all values of gn. In the following discussion, we will keep the
gn’s in the equations for those cases in which they are important.

Another property of the equations is that the values of the free-energy parameters are only determined up to an arbitrary
additive constant. This means that there are only R � 1 independent parameters.

Naturally, to obtain the absolute value of the free-energy from the WHAM equations, it is necessary to know the free-en-
ergy at some reference point, such as infinite or zero temperature.

2.1. Solution by direct iteration (DI)

The first numerical task in calculating the free-energy from these equations is to compute a consistent set of free-energy
parameters as solutions to Eqs. (3) and (4). The obvious and most widely used choice is to begin with a guess for the values of
the free-energy parameters and to iterate these equations.

The first piece of good news is that the guess can be very crude: to begin by setting all free-energy parameters to zero is
almost always acceptable, if not terribly efficient.

The second piece of good news is that direct iteration is almost always sufficient when there are only a small number of
histograms.

The third piece of good news is that the convergence is always exponentially rapid with the number of iterations, even for
a large number of histograms.

The bad news is that even though the convergence is exponential, it is often still very slow, sometimes requiring many
thousands of iterations and a great deal of computer time.

Fig. 1 shows an example of such convergence. The graph plots the absolute error on the whole set of free energies with
respect to time. The absolute error d is defined as the sum of squared differences of the calculated free-energy fi compared to
its converged value f c

i (defined in a previous simulation when the relative error between successive free-energy differences
was less than 10�12)



Fig. 1. Convergence of the absolute error made on the set of free energies, using the DI method introduced in [1]. The graph shows the convergence of free
energies for a 2D Ising model (lattice size L = 32) with 14 simulations which cover the whole temperature range (solid line) and 40 simulations in the same
range (dashed line). In the 14-temperature system, temperatures were separated by an amount of 2.5r, where r is the second moment of the energy
distribution of a simulation. This corresponds to the optimal separation between histograms proposed in this paper (see Section 3).
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d2 ¼
X

i

ðfi � f c
i Þ

2
: ð6Þ
A simple 2D Ising model with lattice size of L = 32 took around 1 min on a single laptop processor to converge the absolute
error below 10�8 for a set of 14 temperatures that spanned the whole temperature range. When a different set of 40 tem-
peratures was used to cover the same range, convergence took more than 4 min.

As we will show in this paper, the overlap between histograms has a strong influence on the error made on the calculation
of free energies.

Various approaches to speeding up the direct iteration method have been suggested. In particular, Alan Ferrenberg has
developed some interesting methods in his thesis [7]. Unfortunately, even with these techniques convergence remains slow
in many problems of interest.

2.2. Nearest-neighbor histograms

To make further progress in developing faster convergence techniques, we will focus our attention on the differences in
the free-energy parameters of neighboring histograms, rather than the parameters themselves. Once these differences are
found, the full set of free energies is obtained by simple addition, up to the usual arbitrary additive constant.

To develop a general iterative method for solving for the free-energy parameter differences, we first consider the simple
case of just two neighboring histograms at inverse temperatures bi and bi+1. Combining Eqs. (3) and (4), we find
efi ¼
X

E

g�1
i HiðEÞ þ g�1

iþ1Hiþ1ðEÞ
� �

exp½�biE�
Nig�1

i exp½�biE� fi� þ Niþ1g�1
iþ1 exp½�biþ1E� fiþ1�

; ð7Þ
which can be re-written as
1 ¼
X

E

g�1
i HiðEÞ þ g�1

iþ1Hiþ1ðEÞ
� �

Nig�1
i þ Niþ1g�1

iþ1 exp �DbiE� Dfi½ � ; ð8Þ
where Dbi = bi+1 � bi and Dfi = fi+1 � fi, as before. This equation was originally derived by Bennett [4] although he did not in-
clude the gi factors. We will refer to Eq. (8) and its variations as Bennett equations.

There is an essential asymmetry in this equation that turns out to be quite important. The origin of this asymmetry is that
we could equally well exchange i and i + 1 to obtain
1 ¼
X

E

g�1
i HiðEÞ þ g�1

iþ1Hiþ1ðEÞ
� �

Nig�1
i exp DbiEþ Dfi½ � þ Niþ1g�1

iþ1

: ð9Þ
While Eqs. (8) and (9) lead to the same solutions, the numerical behavior of the generalized Bennett equations derived below
is different. A hint of why this might be so can be seen by considering the limit of Ni ? 0. Eq. (8) gives an estimate for Dfi,
while Eq. (9) reduces to an uninformative identity.

A numerical solution for Dfi can always be found for either Eq. (8) or Eq. (9). Using the false position method between
upper and lower limits tends to be much more reliable than Newton–Raphson. It is also important to solve this equation
and the equations given below to high accuracy, since errors can propagate.
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If we include more simulations, we can still use Eq. (8) or Eq. (9) as a starting point, which we will call the Bennett approx-
imation. It turns out to be very good, but we can improve on it by including more distant neighboring histograms
systematically.

2.2.1. Combining the Bennett equation with the DI method
As stated before, the DI method is extremely efficient when converging the set of free energies of small systems. We have

seen that giving accurate starting points for the DI method yields very good results, even for reasonable system sizes. In this
respect, it has proven efficient to feed in the results of the Bennett approximation as a guess to the DI method. Convergence is
exponentially fast, stable, and rather straightforward to implement.

2.3. Generalizing the Bennett equation to include more distant neighboring histograms

We can rewrite the basic WHAM Eqs. (3) and (4) to make the inclusion of q neighboring histograms explicit, and then
recast the result to emphasize the similarity with Bennett’s equation (8). This will lead us to an efficient iterative solution
for the full set of equations including all histograms.

Although Bennett’s equation provides an estimate for each Dfn separately, without any influence from other free-energy
differences, the inclusion of more distant neighbors means that the set of values {Dfnjn = 1, . . . ,R � 1} must be obtained
iteratively.

Let us introduce the notation Df ðn;qÞi to refer to the nth level of iteration for a calculation that includes q neighbors on each
side of the original pair. For the lowest level, there are no extra neighbors, so q = 0, and the solution of the Bennett equation
does not require iteration, so n = 0. The Bennett approximation is therefore denoted as Df ð0;0Þi , and is given by the solution to
Eq. (8).

We can rewrite Eqs. (3) and (4) for fi when q neighbors are included in the calculation as
efi ¼
X

E

Xiþ1þq

n¼i�q

g�1
n HnðEÞ exp �biE½ �

,
ziðEÞ; ð10Þ
where
ziðEÞ ¼
Xiþ1þq

m¼i�q

Nmg�1
m exp½�bmE� fm�: ð11Þ
To avoid cluttering up the notation, it is understood that the sum is to be truncated if either i � q < 1 or i + 1 + q > R.
To recast these equations in a form similar to that of Eq. (8), divide both sides of Eq. (10) by the factor efi and write

it as
1 ¼
X

E

Piþ1þq
n¼i�qg�1

n HnðEÞ
ziðEÞ exp½biEþ fi�

: ð12Þ
The denominator in Eq. (12) can be found by multiplying Eq. (11) by the factor exp[biE + fi] and writing it as
ziðEÞ exp½biEþ fi� ¼
Xiþ1þq

m¼i�q

Nmg�1
m exp ðbi � bmÞEþ fi � fm½ �: ð13Þ
Combining Eqs. (12) and (13), we find
1 ¼
X

E

Piþ1þq
n¼i�qg�1

n HnðEÞPiþ1þq
m¼i�qNmg�1

m exp ðbi � bmÞEþ fi � fm½ �
: ð14Þ
It will prove more convenient to write this as two equations:
1 ¼
X

E

Piþ1þq
n¼i�qg�1

n HnðEÞ
XiðEÞ

; ð15Þ
and
XiðEÞ ¼
Xiþ1þq

m¼i�q

Nmg�1
m exp ðbi � bmÞEþ fi � fm½ �: ð16Þ
With this notation, we can recast the Eqs. (15) and (16) in a convenient form that can be solved for Df new
i .

Fix all free-energy parameter differences with m – i at their old values fDf old
m jm–ig. For m < i; fi � fm ¼

Pi�1
k¼mDf old

k , and for
m > iþ 1; fiþ1 � fm ¼ �

Pm�1
k¼iþ1Df old

k . For m = i + 1, we have the parameter we wish to determine, fiþ1 � fi ¼ Df new
i . Eq. (16)

becomes
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XiðEÞ ¼ Nig�1
i þ Niþ1g�1

iþ1 exp �DbiE� Df new
i

� �
þ
Xi�1

m¼i�q

Nmg�1
m exp ðbi � bmÞEþ

Xi�1

k¼m

Df old
k

" #

þ
Xiþ1þq

m¼iþ2

Nmg�1
m exp ðbi � bmÞE� Df new

i �
Xm�1

k¼iþ1

Df old
k

" #
; ð17Þ
or
XiðEÞ ¼ Nig�1
i þ Niþ1g�1

iþ1 exp �DbiE� Df new
i

� �
þ
Xi�1

m¼i�q

Nmg�1
m exp ðbi � bmÞEþ

Xi�1

k¼m

Df old
k

" #

þ exp �Df new
i

� �
�
Xiþ1þq

m¼iþ2

Nmg�1
m exp ðbi � bmÞE�

Xm�1

k¼iþ1

Df old
k

" #
: ð18Þ
The pair of Eqs. (15) and (18) contains only a single unknown Df new
i , so it is easy to solve numerically. However, note that

Df new
i occurs in two places in (18).
The asymmetry that we saw in the Bennett equation also propagates when adding more neighbors. If we had started with

the equation for fi+1 instead of that for fi, we would have found
1 ¼
X

E

Piþ1þq
n¼i�qg�1

n HnðEÞPiþ1þq
m¼i�qNmg�1

m exp ðbiþ1 � bmÞEþ fiþ1 � fm
� � : ð19Þ
The limits on the sum in the denominator are determined by the neighbors of the central pair, which doesn’t change when
we shift from fi to fi+1. It is straightforward to rewrite Eqs. (15) and (16) for this new set of indices.

2.4. Solving the generalized Bennett equations with q neighboring histograms

From (15) and (16), there are different ways one can initialize and converge a set of free energies. Here, we describe the
two algorithms that were most efficient for our test case: the 2D Ising model.

2.4.1. Successive iteration over neighboring histograms (SINH)
The SINH algorithm is based on the decreasing weight of more distant histograms.
To solve the generalized equations, we start with the Bennett approximation in Eq. (8), which gives us the set

ff ð0;0Þn jn ¼ 1; . . . ;R� 1g, using only information from nearest-neighbor histograms (q = 0).
For the next step, we will combine the nearest neighbors on each side of each pair of histograms. This corresponds to

q = 1. Unlike the q = 0 case, when q P 1 the set of equations must be iterated to find a fully consistent set of free-energy
differences.

After obtaining a converged set of free-energy differences with q = 1, we find a new set for q = 2 neighbors, and so on until
the sets for q and q + 1 neighbors agree. At this point we do not need to include more neighbors, since all overlapping his-
tograms have been taken care of. This is an important point, as the number of relevant neighboring histograms is usually
much smaller than the total number of simulations. The final converged set can then be substituted into the full set of equa-
tions as a check.

At each iteration, we will be going from an ‘‘old” set of free-energy differences, fDf old
i g, to a ‘‘new” set fDf new

i g. For the
lowest level of iteration when the number of neighboring histograms is incremented from q � 1 to q, fDf old

i g ¼ fDf ðnc ;q�1Þ
i g,

where nc indicates the last (converged) iteration at level q � 1, so that fDf ðnc ;q�1Þ
i g ¼ fDf ðnc�1;q�1Þ

i g. The new estimate for
the free-energy difference is fDf new

i g ¼ fDf ð0;qÞi g. For subsequent iterations at the level q, fDf old
i g ¼ fDf ðj;qÞi g, and

fDf new
i g ¼ fDf ðjþ1;qÞ

i g.

2.4.2. Convergence by iteration over all neighbors (CIAN)
When histograms are close to each other, the SINH algorithm needs to converge over many levels of approximation q,

until all overlapping histograms have been considered. The idea behind the CIAN algorithm is to give an accurate first guess
on the free-energy differences, and then converge the whole set at once.

For the initialization procedure, better accuracy will be given by including as many overlapping neighbors as possible in
Eqs. (15) and (18). One has to be careful though, stability is often an issue when solving these equations, they require good
guesses on the set of unknowns. One way around this is the following: when computing Dfi, include all histograms Hn for all
n such that n 6 i + 1. The first free-energy difference Df0 will only include its two constituents: H0 and H1. As one loops over
the index i, more histograms will be included, all of them initialized using at least two histograms. This step is extremely fast
since no iteration is involved. We have seen that errors on initial free energies propagate rapidly throughout this process, and
may lead to unsolvable equations because of instability.

The second step is to sweep through the entire set of free-energy differences by using Eqs. (15) and (18), now including all
neighbors. The advantage is that there is only one convergence run. The disadvantage is that the algorithm includes all
neighbors, even non-overlapping ones, which might slow down convergence when including many simulations. To deal with
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this problem, it might be useful to analyze histograms beforehand by looking at their overlap, and then setting an interaction
matrix M. The matrix element Mij would determine whether histograms i and j overlap, and therefore if their pair should be
considered when converging free-energy differences.

2.4.3. Technical details
As mentioned earlier, all equations were solved using the false position method. This algorithm requires two initial con-

ditions. These are best estimated by coming back to the two-simulation case. We recall Eqs. (8) and (9) which are two equiv-
alent ways of calculating the free-energy difference between two simulations. For each equation, there is a contribution
coming from each simulation. The free-energy difference comes in the equation multiplied by a pre-factor belonging to
one of the simulations. One can solve analytically a simplified (and therefore approximate) version of these equations by
keeping terms that belong to this simulation only. The following equations can be written
Fig. 2.
of neig
Df a
i ’ � ln

X
E

Hiþ1ðEÞ
Niþ1 expð�DbiEÞ

; ð20Þ

Df b
i ’ ln

X
E

HiðEÞ
Ni expðDbiEÞ

; ð21Þ
where the superscripts a and b refer to the different approximations. By this mean we take advantage of the asymmetry in
the equations. Although the exact equations lead to identical results, the path used to solve for the unknown is different.

The tolerance required for the convergence of free-energy differences should be much weaker than the one used for solv-
ing the equations (a factor of �1000 between the two has proven to be sufficient). We expect convergence to be rapid since
the effective weights of the neighboring histogram should only have a small adjustment at each iteration. However, expe-
rience shows that iteration procedures do not always converge. We have found both limit cycles and even divergences. Aver-
aging successive iterations was usually enough to overcome cyclic behaviors and instabilities.

2.5. Effect of overlap and efficiency of the algorithms

Out of the two algorithms proposed here, SINH seems to be the fastest and most stable algorithm regarding numerous
tests we have done.

Fig. 1 shows the result of two simulations of a 2D Ising model at L = 32 using the DI method. For the first case, we selected
the temperatures of our simulations by taking a separation of 2.5r between histograms (see Section 3), starting at infinite
temperature. The second test used three times as many simulations in the same range to study the effect of large overlap on
the different algorithms.

It should be noted that although the absolute error of the free energies is plotted, the program was set as to converge the
relative difference between successive sets of free energies.

The results of the 14-temperature simulation using the SINH algorithm is shown on Fig. 2. The many curves show the
different levels of approximation q. The reason why they seem to level off again is because we plot the absolute error. This
seems reasonable as a fully converged set of free energies that do not include all relevant neighbors will contain an absolute
error.

The main results of the 14-and 40-temperature simulations for the DI, SINH, and CIAN algorithms are given in Table 1. For
each simulation, the time necessary for convergence (d 6 10�12) of the whole set of free energies is reported.
Absolute error with respect to time for the set of free energies coming from the 14-temperature simulation with the SINH algorithm. As the number
hbors taken into account is increased (denoted by q), convergence improves.



Table 1
Time of convergence (in seconds) of the 14-and 40-temperature simulations for different algorithms.

DI SINH CIAN

14-Temperature simulation 66 12 16
40-Temperature simulation 440 180 Failed
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When stacking up 40 simulations in the same energy interval as the optimal 14-temperature range, the DI algorithm was
’7 times longer than before, which scales with the square of number of simulations added. The SINH algorithm was 15 times
longer for the 40-temperature simulations compared to the 14-temperature case, though it was still more than twice as fast
as the DI method. The reason why the SINH algorithm is becoming less advantageous is due to the high overlap between
simulations. Moreover, the DI method is efficient at converging simulations that are close to each other. The CIAN algorithm
was not able to successfully initialize all its free-energy differences in the 40-temperature case, owing to the large overlap
between histograms. This is inherent to the initialization process of the free energies in the algorithm: only previous neigh-
bors are considered, and stability becomes an issue when the overlap is important.

The efficiency of the equations proposed in this work strongly depend on the different number of histograms and their
overlaps. Unlike the DI method which is very efficient for free energies that are close to each other, our algorithm relies
on the overlap between neighboring histograms. The more overlap, the longer it will take to converge. This is actually good
news, since less overlap means a larger parameter space span for fixed computer time. The following section explains how
one should choose the optimal separation between neighboring simulations.

3. Optimized choice of simulation parameters

So far, we have addressed the question of how to optimize the solution of the WHAM equations for the free-energy
parameters, {fi} from the histograms for a given set of computer simulations. However, since the ease of finding the free-en-
ergy parameters depends on how much overlap there is between histograms that are not nearest neighbors, we are naturally
led to the question of what the optimal degree of overlap might be. For ease of solution of the equations for the free-energy
parameters, we would like to have overlap only between nearest-neighbor histograms, but the primary criterion must re-
main the overall accuracy of the calculation.

At first sight, it might be thought that the final errors would be minimized by having a great deal of overlap to get more
information about the free-energy parameters. This would suggest making the temperature differences between simulations
as small as possible.

However, there is a compensating effect. To cover a given range of temperatures with a fixed amount of computer time,
narrowing the spacing between histograms means that more simulations are needed. The simulations must be correspond-
ingly shorter, and the statistical errors in each simulation corresponding larger.

The statistical errors in WHAM calculations for a given spacing between the simulations can be regarded as arising from
two related sources. The first concerns the determination of the free-energy parameters fi = �biF(bi) for each of the R simu-
lations. The second source of error concerns the error in the free-energy as a function of temperature given the free-energy
parameters.

To investigate the dependence of these errors on the separation between simulations, we use the nearest-neighbor (q = 0)
approximation. This is a good approximation when the overlap between more distant neighbors is not too large, which turns
out to be the case for the optimal separation.

3.1. Error in the free-energy parameters

Since we are using the nearest-neighbor approximation to estimate the errors in WHAM calculations, we need only con-
sider the original Bennett Eq. (8). To simplify the equations, we ignore the relatively unimportant gn factors. To further sim-
plify the notation, we label the two simulations as 1 and 2, rather than i and i + 1. This leaves us with
1 ¼
X

E

H1ðEÞ þ H2ðEÞ
N1 þ N2 exp �Db1E� Df1½ � : ð22Þ
We begin by varying the values of the histograms and Df1 in Eq. (22),
0 ¼
X

E

dH1ðEÞ þ dH2ðEÞ
N1 þ N2 exp �Db1E� Df1½ � þ

X
E

H1ðEÞ þ H2ðEÞ
N1 þ N2 exp �Db1E� Df1½ �½ �2

N2 exp �Db1E� Df1½ �dDf1; ð23Þ
and averaging over all possible simulation results.
Since separate simulations are statistically independent, we have hdH1(E)dH2(E

0
)i = 0. We will also assume that the corre-

lation time is zero, so that
hdH1ðEÞdH1ðE0Þi ¼ d2H1ðEÞdðE; E0Þ; ð24Þ
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where d(E,E
0
) is the Kronecker delta function. This approximation should only affect the magnitude of the error and not its

dependence on overlap.
Moving the second term in Eq. (23) to the left side of the equation, squaring, and averaging over all possible simulations,

we find
d2Df1

X
E

H1ðEÞ þ H2ðEÞ
N1 þ N2 exp �Db1E� Df1½ �½ �2

exp �Db1E� Df1½ �
" #2

N2
2 ¼

X
E

d2H1ðEÞ þ d2H2ðEÞ
N1 þ N2 exp �Db1E� Df1½ �½ �2

: ð25Þ
Again using the assumption of zero correlation time to insert d2Hi(E) = Hi(E) in Eq. (25), this becomes
d2Df1

X
E

H1ðEÞ þ H2ðEÞ
N1 þ N2 exp �Db1E� Df1½ �½ �2

exp �Db1E� Df1½ �
" #2

N2
2 ¼

X
E

H1ðEÞ þ H2ðEÞ
N1 þ N2 exp �Db1E� Df1½ �½ �2

ð26Þ
Solving for d2Df1, we find
d2Df1 ¼ N�2
2

P
E

H1ðEÞþH2ðEÞ
N1þN2 exp �Db1E�Df1½ �½ �2

h i
P

E
H1ðEÞþH2ðEÞ

N1þN2 exp �Db1E�Df1½ �½ �2
exp �Db1E� Df1½ �

h i2 ð27Þ
This expression for the error simplifies if the simulations are the same length (N1 = N2 = N), which should be sufficient for
our purposes.
d2Df1 ¼
P

E
H1ðEÞþH2ðEÞ

1þexp �Db1E�Df1½ �½ �2

h i
P

E
H1ðEÞþH2ðEÞ

1þexp �Db1E�Df1½ �½ �2
exp �Db1E� Df1½ �

h i2 ð28Þ
This expression also explicitly displays the expected dependence of the error on the length of the simulation.

3.1.1. Approximation of the histograms by two Gaussians
To evaluate the dependence of the error in the free-energy parameters in Eq. (28), consider the case in which the prob-

ability distributions at both b1 and b2 have the same Gaussian form, centered about ±sr/2. To simplify the notation, we also
define x � DbE.
H1ðxÞ ¼ Nð2pr2Þ�1=2 exp �ðxþ sr=2Þ2

2r2

" #
; ð29Þ
and
H2ðxÞ ¼ Nð2pr2Þ�1=2 exp �ðx� sr=2Þ2

2r2

" #
: ð30Þ
By symmetry, the exact solution for the free-energy parameters are f1 = f2, which gives Df1 = 0. Inserting this into Eq. (28)
and changing the sums to integrals, we find
d2Df1 ¼
ð2pr2Þ1=2

N

R
dx

exp �ðxþsr=2Þ2
2

� �
þexp �ðx�sr=2Þ2

2

� �
1þexp �x½ �½ �2

� �
R

dx
exp �ðxþsr=2Þ2

2

� �
þexp �ðx�sr=2Þ2

2

� �
1þexp �x½ �½ �2

exp �x½ �
� �2 ; ð31Þ
or
d2Df1 ¼
ð2pr2Þ1=2

N

R
dx

exp �ðxþsr=2Þ2
2

� �
þexp �ðx�sr=2Þ2

2

� �
1þexp �x½ �½ �2

� �
R

dx
exp �ðxþsr=2Þ2

2

� �
þexp �ðx�sr=2Þ2

2

� �
1þexp �x½ �½ �2

exp �x½ �
� �2 : ð32Þ
This expression can then be evaluated numerically, which will be done later in Section 3.3.1. It is shown in Appendix A
that the error for large separations grows exponentially.

3.2. Error in the free-energy as a function of temperature, given the free-energy parameters

The error in the partition function Z can be estimated using the assumption that the errors in W(E) are independent.
d2Z ¼
X

E

d2WðEÞ exp½�2bE�: ð33Þ
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The standard relationship for the error in the density of states W(E) for the multiple histogram method (WHAM) [2] is
dWðEÞ ¼WðEÞ
X

i

HiðEÞ
" #�1=2

: ð34Þ
Combining the equations, this gives us
d2Z ¼
X

E

WðEÞ2 exp½�2bE�
X

i

HiðEÞ
" #�1

: ð35Þ
From this we can see that the error in the free-energy F is related to the error in Z by
dF ¼ �b�1dZ=Z: ð36Þ
Eq. (35) then becomes
d2F ¼ Z�2
X

E

WðEÞ2 exp½�2bE�
X

i

HiðEÞ
" #�1

: ð37Þ
3.2.1. Gaussian approximation for the error in the free-energy
Let us now approximate thermal distributions by Gaussians.
WðEÞ exp½�bE�Z�1 � ½2pr2��1=2 exp � bðE� hEiÞ2

2r2

" #
: ð38Þ
As Subsection 3.1, we will again ignore the variation of the width of the thermal distribution on temperature.
We are most interested in minimizing the maximum error in determining F(b), given the free-energy parameters {fn}. The

maximum error will occur when the denominator in the sum is minimum, which is when hEi is located half way between the
histograms on either side of it, or hEi = 0. The maximum error in the free-energy as a function of temperature can then be
found by evaluating Eq. (37) for hEi = 0.
d2Fmax ¼ b�2½2pr2��1
X

E

exp � bE2

r2

" # X
i

HiðEÞ
" #�1

: ð39Þ
As in Subsection 3.1, we denote the separation between the histograms by DE = sr. Inserting the approximations for the
histograms in Eqs. (29) and (30), we find
d2Fmax ¼ N�1b�2½2pr2��1=2 �
X

E

exp �bE2

r2

" #
exp �ðxþ sr=2Þ2

2r2

" #
þ exp �ðx� sr=2Þ2

2r2

" #" #�1

: ð40Þ
The error calculated from Eq. (40) will clearly grow rapidly as s increases, since the denominator in the sum has a min-
imum at bE ¼ 0 where the numerator has a maximum.

3.3. Total error

The error in the free-energy parameters is given as d2Df1 in Eq. (32), and the maximum error in the free-energy, given the
free-energy parameters, is d2Fmax in Eq. (40).

Finally, for a fixed total number of MC configurations Ntotal, the number N devoted to each simulation must be reduced
when the spacing between simulations is reduced and the number of simulations increases.
N ¼ Ntotal

M
: ð41Þ
Since s is inversely proportional to M � 1, when M is large,
N ¼ Ntotal

M
� sNtotal: ð42Þ
The square of the total error must then be proportional to
d2Ftotal � b�2 1
sNtotal

b�2d2Df1 þ d2Fmax
� �

: ð43Þ
By minimizing this quantity with respect to s, we should be able to determine the optimum separation between
histograms.



Fig. 3. Error in the free-energy parameters as a function of the relative distance between two histograms in units of r, the width of the histogram (see
Section 3.1.1). The inset shows the same plot at a finer scale, plus the five and ten percentile errors.
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3.3.1. Numerical determination of the optimal separation between histograms
This result is shown on Fig. 3 where the error in the free-energy is plotted as a function of neighboring histograms dis-

tance. The minimum is located at 2.45r, and the five and ten percentile errors are plotted as well. This graph disproves the
common belief that close simulations will yield better results.

The advantage of using the optimized separation of 2.45r between neighboring simulations is twofold: first we need few-
er simulations for a given parameter space, which implies better statistics on each of them for fixed amount of computer
time. Second, such a separation between histograms will yield fast convergence of our optimized algorithm.

This optimized spacing of histograms needs special attention when coming close to a phase transition. The width of a
histogram grows with the specific heat (r2 / CV/b2), which means that a single histogram will likely represent an important
part of the energy spectrum close to the phase transition. However, this simulation is most likely to experience critical slow-
ing-down and suffer from important correlation times. This will be taken into account when converging free energies by
properly evaluating the terms gn in Eqs. (15) and (16).

The complete optimization of a set of simulations will depend on additional considerations. As we optimized the spacing
between histograms based solely on free-energy convergence, it is unlikely that this will be identical for example with
choices of temperatures that optimize parallel tempering [8]. Various optimization schemes have been proposed ranging
from a constant acceptance probability of attempted swaps independent of temperature [9], to the minimization of
round-trip times between the lowest and highest temperatures [10].

4. Summary

In this paper, we propose a new algorithm for solving the WHAM equations to estimate free energies out of a set of MC or
MD simulations (see algorithm in Section 2.4.1). The algorithm uses free-energy differences, which provide a more natural
way of approaching the problem. Fast convergence relies on histograms being far from each other (less overlap between his-
tograms). We quantify this distance by providing an optimized choice of separation between histograms which minimizes
the error made on the free energies. We showed for our test case – the 2D Ising model – that this separation favors the algo-
rithm by successive iteration over neighboring histograms (SINH), based on overlap between histograms.

Even though the second part of this paper argues for a rather wide separation between histograms, there are various sce-
narios where the SINH algorithm is most likely a better candidate in terms of efficiency than the conventional DI method. It
will turn out useful in the analysis of preexisting data, where histograms may not have been optimally spaced. Also, memory
requirements can become important when the DI method is used on a large number of simulations because it relies on the
complete data set of histograms in order to estimate each free-energy, rather than its relevant neighborhood.
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Appendix A. Errors for large separations

For sr� 1, we can approximate the factor exp[�x] for each Gaussian in Eq. (32) by exp[±sr]. This gives us
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d2Df1 ’
ð2pr2Þ1=2

N

R
dx

exp �ðxþsr=2Þ2
2

� �
1þexp sr½ �½ �2

� �
þ
R

dx
exp �ðx�sr=2Þ2

2

� �
1þexp �sr½ �½ �2

� �
R

dx
exp �ðxþsr=2Þ2

2

� �
1þexp sr½ �½ �2

exp sr½ � þ
R

dx
exp �ðx�sr=2Þ2

2

� �
1þexp �sr½ �½ �2

exp �sr½ �
� �2 ; ð44Þ
leading to
d2Df1 ’
1
N

1þ exp sr½ �½ ��2 þ 1þ exp �sr½ �½ ��2
h i

1þ exp sr½ �½ ��2 exp sr½ � þ 1þ exp �sr½ �½ ��2 exp �sr½ �
h i2 : ð45Þ
Again using sr� 1, we can write
d2Df1 ’
1
N

exp 2sr½ � þ 1½ �
exp �sr½ � þ exp �sr½ �½ �2

’ 1
4N

exp 4sr½ �: ð46Þ
This is an exponentially large error.
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